Why radiometric dating is accurate
Dating > Why radiometric dating is accurate
Last updated
Dating > Why radiometric dating is accurate
Last updated
Click here: ※ Why radiometric dating is accurate ※ ♥ Why radiometric dating is accurate
It does not use the original amount of potassium. Atoms of radioactive isotopes are unstable and decay over time by shooting off particles at a fixed rate, transmuting the material into a more stable substance. A straightforward reading of the Bible shows that the earth was created in six days about 6,000 years ago. Be assured that multiple dating methods used together on igneous rocks are almost always correct unless the sample is too difficult to date due to factors such as metamorphism or a large fraction of xenoliths.
The diamonds could not be older than the earth itself. Such drastic measures will help insure continued disbelieve in Gods existence. Carbon 14 is created by cosmic rays in the upper atmosphere. Even the use of isochron dating, which is supposed to con some initial condition assumptions, produces dates that are not reliable. Such an interpretation fits nicely into the range of what he already believes the age to be. A related method iswhich measures the ratio of thorium-230 to thorium-232 in ocean sediment. This is between impossible. Townsville geology is dominated by a number of prominent granitic mountains and hills. C-14 decays with a half-life of 5,730 years.
See this page in: Hungarian, Russian, Spanish. Today, innovative techniques provide further dating and understanding of the history of life. The methods are all based on radioactive decay: Fossils may be dated by calculating the rate of decay of certain elements.
Accuracy of Fossils and Dating Methods - Radiometric dating, or numeric dating, determines an actual or approximate age of an object by studying the rate of decay of radioactive isotopes, such as uranium, potassium, rubidium and carbon-14 within that object.
By on September 19, 2011 in , Radiometric dating is a much misunderstood phenomenon. Evolutionists often misunderstand the method, assuming it gives a definite age for tested samples. Creationists also often misunderstand it, claiming that the process is inaccurate. Radiometric Dating Is Not Inaccurate Perhaps a good place to start this article would be to affirm that radiometric dating is not inaccurate. It is certainly incorrect, and it is certainly based on wrong assumptions, but it is not inaccurate. What do I mean? How can something be accurate and yet wrong? To understand this point, we need to understand what exactly is being measured during a radiometric dating test. One thing that is not being directly measured is the actual age of the sample. It needs to be remembered that observational science can only measure things in the here-and-now, in a manner which can be repeated. Historical science is concerned with trying to work out what may have happened in a one-off event in the past. Historical science is not capable of repetition, checking or peer—˜review. The age of a rock sample falls under the heading of historical science, not observational science. So what do the observational scientists in the radiometric dating lab do? Radioactive isotopes are unstable and will decay into more stable isotopes of other elements. One common radiometric dating method is the Uranium-Lead method. This involves uranium isotopes with an atomic mass of 238. This is the most common form of uranium. It decays by a 14-step process into lead-206, which is stable. Each step involves the elimination of either an alpha or a beta particle. Therefore the process is: Uranium Decay Equation Each individual atom has a chance of decaying by this process. If you were able to examine just one atom, you would not know whether or not it would decay. The chance of it decaying is not definite, by human standards, and is similar to the chance of rolling a particular number on a dice. Although we cannot determine what will happen to an individual atom, we can determine what will happen to a few million atoms. This is similar to our dice analogy. We cannot tell what number we will roll in any one shake, but if we rolled 6,000 dice, the chances are very high that 1,000 of them would have landed on a six. One dice is unpredictable. Many dice follow a statistically predictable pattern. In the same way, one U-238 atom is unpredictable, but a sample containing many millions of U-238 atoms will be very predictable. What happens statistically is that half of the available atoms will have decayed in a given period, specific to each radioactive species, called the half-life. For example, if element Aa had a half-life of 1 day and we had 1,000 lbs. Determining Half-Life By observing how fast U-238 decays into lead-206, we can calculate the half-life of U-238. This is a theoretical calculation, and we can therefore determine that the half-life of U-238 is 4. Remember that the half-life is a statistical measure. Granting that U-238 has a half-life of 4. A very common rock that contains U-238 is granite. If we look at some of the very small zircon crystals in granite, we can accurately measure how much U-238 and Pb-206 the crystal contains. The half-life gives us this value, provided the half-life has never altered during the lifetime of the zircon crystal. This is clearly impossible. It is usually assumed, without justification, that the original quantity of Pb-206 in the rock was zero. Given that lead compounds are fairly soluble in water, this is something that we cannot be very sure of. Using the above assumptions, it is calculated that the zircon crystals have an age of about 1. Based Upon Assumptions The radioactive decay process above can be seen to produce 8 alpha-particles for each one atom of U-238. Each α-particle could gain new electrons and become an atom of helium. The rate of diffusion of helium from a zircon crustal can be measured. It turns out that this rate of diffusion of helium is compatible with the crystals being about 5,000 years old, not 1. Although assumptions 2 and 3 are not provable, they actually seem very likely in this particular example. Therefore, it seems that the first assumption must be wrong. Remember that we have already said that these experimenters are highly skilled. It is therefore unlikely that the laboratory technicians have made a mistake in their measurements of U-238 or Pb-206. The only possible conclusion, therefore, is that the half-life of U-238 has not been constant throughout the lifetime of the granite and its zircon crystals. Other radiometric dating methods are based on similar assumptions. If the assumptions cannot be trusted, then the calculations based on them are unsound. It is for this reason that creationists question radiometric dating methods and do not accept their results. About Eric Hovind Eric Hovind grew up immersed in the world of apologetics and following college graduation in 1999, he began full-time ministry. He lives in Pensacola, Florida with his wife Tanya and three children and remains excited about the tremendous opportunity to lead an apologetics ministry in the war against evolution and humanism.